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Abstract

Implicit schemes for the integration of ODEs are popular when stability is more of concern than accuracy, for
instance for the computation of a steady state solution. However, in particular for very large systems, the solution
of the involved linear systems may be very expensive. When these systems are solved iteratively to a certain
tolerance, it is often not known which tolerance has to be taken. We propose a different strategy, where the number
of iterations is fixed, but the step size is controlled with respect to stability. Numerical tests show the effectiveness
of this approach in comparison with an implicit scheme that iterates to a certain tolerance. © 1999 Elsevier Science
B.V. and IMACS. All rights reserved.
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1. Introduction

Implicit schemes for the integration of ODEs are popular when stability is more of concern than
accuracy, for instance for the computation of a steady state solution. However, in particular for very large
systems the solution of the involved linearized systems may be very expensive. In this paper we study
the solution of these linear systems by a moderate number of the minimum residual iterations [1,14].
Of course, this puts limits to the step size since these approximate schemes may be viewed as explicit
schemes and these are never unconditionally stable. However, in our approach we obtain a different
explicit scheme for each time step. As we will see, a succession of these different schemes will be much
more stable than each of them separately. This is mainly because the minimum residual approximation
adjusts itself to a given right-hand side. It turns out that even a modest degree of approximation allows
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rather large time steps and we propose a simple mechanism for the control of the step size with respect
to stability.

The usage of a few minimum residual iterations is attractive, since this involves only matrix-vector
operations. Specially on parallel computers this may be an advantage because matrix—vector operations
are usually easy to parallelize. If one uses k iterative steps, then the resulting approximate method may
be viewed as an explicit integration scheme and such schemes have been studied heavily. Most often,
these schemes are studied with fixed coefficients of Chebyshev approximations [11,12,16,17,21,23].
Performance of these methods depends on a priori knowledge of a region containing the spectrum of the
Jacobian. Another approach, that is based on Krylov subspace information, is to use an approximation
for the vector e’ y" (where A is the Jacobian), for accurate time integration of stiff systems |8.,9].

The minimum residual iterations lead to different coefficients for each time step. The usage of
minimum residual iterative schemes, e.g., GMRES, for the approximate solution of the involved linear
systems is not new either, but the resulting schemes have been studied from an accuracy point of view,
that is the main focus is on strategies to obtain bounded residuals and higher order consistency [4-6,15].
Typically, one solves the linear systems to a certain tolerance, but it is often not known which tolerance
has to be taken.

We study the usage of a few minimum residual iterations from the point of view of stability. A nice
aspect of minimum residual iterations is that they construct implicitly an integration polynomial of which
the coefficients are adjusted to the specific right-hand side. If after some time steps components in the
solution in higher frequencies have not sufficiently damped out, then they are present in the right-hand
side. As soon as these components are too large, they are automatically damped out by the minimum
residual polynomial, provided that the time step is not too large with respect to the number of iterations.
We propose an easy strategy to control the size of the time step. This strategy is based on information that
we obtain from the iterative process itself. As we will see from our numerical experiments, the proposed
stability control can be quite efficient as compared to iterating to a certain tolerance.

The stability control is useful in situations where accuracy is not the restrictive factor. However, our
approximated implicit schemes can be used for high accurate computations in an ODE code as well. Our

“ndings on this respect will be reported elsewhere.

The remainder of our paper has been organized as follows. Our basic approach has been formulated in

ction 2. In Section 3 we present the stability analysis and discuss how the stability can be monitored.
we will do this for two different schemes. Implementation issues are discussed in Section 4. Numerical
experiments are presented in Section 5, and we have listed some conclusions at the end.

2. Minimum residual approximated implicit schemes

The general idea behind our approach is as follows. Our aim is to obtain a cheap alternative for an
implicit integration scheme, without loosing too much in terms of stability. We start with a given implicit
scheme of order p in time, and we approximate the solution of the associated implicit system with a few
steps of a minimum residual iterative solver, say GMRES. This leads to a new scheme, and in order to
let this new scheme have at least the same order of consistency, we need to start GMRES with the result
of an explicit scheme of order p. This is different from the popular predictor—corrector approach, where
the corrector is solved by successive substitution (this Richardson type of iteration gives an integration
scheme with limited stability properties, comparable to the stability of the predictor).
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We will work out the idea in more detail for the simple Euler Backward (EB) scheme for the system
of ODEs:

% =f@.y.  yl,=»eR". M
EB is given by

il = V' 4 At f (tagr, ¥i)). )
In order to solve this equation for yfr:,'pll, we take Euler Forward (EF)

Yot =y 4 AL f (4, y"), 3)
as an initial guess, and we write

Yimpl =5+ Ay. @)
The vector Ay satisfies

Yo Ay =y 4+ At f(tr, yo©l + Ay). )
This leads to

Ay =y"+ At f(tasr, Y57+ Ay) =y 2y + At{ f (tasr, Yo©) + AAY} — yi*!,

where A denotes the Jacobian, evaluated in (2,1, y{;“ ). In the predictor—corrector approach one ignores
the Ay in the right-hand side, and one repeats the preceding steps, which leads to an iterative application
of (4):

Yo =Y+ Ay (©)
In our approach, we take for Ay the approximate solution from
(I —AtA)x =r"=y" — yo*t' + At f (tazr, y2T). )

Note that r" can be interpreted as the residual for (2) that we get when y4*! is inserted.

We solve (7) by k steps of GMRES, with starting solution xo = 0, so that the approximated solution
X can be represented as

(Ay:=)x; =P (I — AtA)r",

where P,fﬁ)l is the so-called iteration polynomial of degree k — 1, associated with GMRES (in the case
that A is symmetric, we take the MINRES method instead of GMRES). The number of iterations k is kept
fixed. The superindex - has been included in order to indicate that we usually get a different polynomial
for each time step. We will refer to the resulting scheme as an Minimum Residual Approximated Implicit
(MRAI) scheme. Obviously, we can interpret the combination of (7) with minimum residual iterations as
an inexact Newton method for (2).

We leave it to the reader to verify that the order of the local error is the same as for EB or EF,
irrespective of the number of minimum residual iterations used for the approximation of x. For more
general implicit schemes, one has to take care that the starting vector is constructed with an explicit
scheme of at least the same consistency order.
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3. Stability of the MRAI scheme
3.1. Euler Backward based MRAI

The MRAI scheme of the previous section can be represented by
+! ___yg-!-l + Pk(iz_)](l _ AtA)(y" n+l + Atf(tn+l, n+1)) (8)

with y"“ =y" + At f(t,, Y.

This explicit scheme is difficult to analyze, because the polynomial P, depends on spectral properties
of the matrix as well as on the vector on which it is acting. This means that we can not simply apply the
MRALI scheme to a linear homogeneous system and consider its effect in each eigenvector direction
independently.

For the stability we look at the recursions obtained when f (¢, y) = Ay, that is we consider, as is usual,
the behavior for the linear homogeneous case. The MRAI scheme (8) then takes the form

yH =+ Aty + P - AtAF, ©)

r' = (AtA)*y". (10)
After multiplying the right-hand side of (9) by (/ — AtA)~!(I — AtA), we obtain

YT =1 = AtA) (I = [I = (I — AtA) P (I — AtA)](AtA)?)y" (11)

The polynomial [/ — (I — AtA)P, (")1(1 — AtA)] is just the k-degree minimum residual polynomial
R,E")(I — AtA), that is the polynomial that describes how the initial residual r” = r{j is reduced to r},
after k minimum residual iterations.

Assuming that A € R¥*V can be diagonalized as A = SAS™!, where A is a diagonal matrix with real
eigenvalues A ; on its main diagonal, we arrive, with 2" = § ~lyn at

zn-H — (I _ A[A)_l ([ (n)(l AtA)(AtA)z)z", (12)

or for the jth component 7" =z’ of 2", and the jth eigenvalue u = ArA;:

n+1

M =0-w T (1= ROA - w7 (13)
We have written the above expressions for the residual polynomial R{", rather than for P",, since R}"

satisfies an optimality property: IlR,f,’Z)(I — AtA)r’||, is minimal over all polynomials R of degree k,
satisfying R(0) = 1. Note that exactly the same recursions as (12) and (13) describe how the initial
residual $~'r"*! is related to its predecessor S~'r”.

From experiences with GMRES, it is well known that this polynomial attempts to reduce the largest
components of S~'r", by putting a root close to the corresponding eigenvalue. Therefore, if the scheme
leads to a large component in the vector S™'r", because of instability, then this component will be damped
and in the next time step a new polynomial is automatically constructed that tries to reduce other new
dominating components. The heuristic argument behind our stability control strategy is that we assume
that in average, over a number of successive time steps, no component of the vector S~'r" dominates, or
in other words, that all its components are more or less equal in absolute value.

The jth component of S~!r" is multiplied in step n by a factor to R,f,")(l — w)i?, and following the
above heuristics it is likely that the polynomial

O(w) = p* R (1 —
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Fig. 1. Stability governed by the roots of Q(u) (cf. (15), (17)).

has almost the minimax property over the interval [AzAy, AtA,] (we assume that the eigenvalues have
been ordered as Ay < --- < A;). Note that this leads to a weaker condition than the requirement that the
reduction polynomial is small over the entire spectrum in each time step. The latter requirement is made
for schemes based upon Chebyshev polynomial approximations.

We will further assume that A; < 0. The stability condition now reads

1—RM (1 — pu)u? 1-
Azl ‘__._Qﬂ <l (14)
1 —u 1—pn
The last condition in (14) is equivalent to
n< O <2—u. (15)

Note that Q(1) = R”(0) =1, and 0 is a root of Q of multiplicity 2. The other k roots 7; satisfy
R (1 — n;) = 0. Suppose that 7; < --- < n;. Since 4 < O over the interval of interest, we have that
n;, in particular n; < 0.

In Fig. 1 we have plotted the situation when Q has the exact minimax property. With the estimate

k — . —
o] =[] 5=L < w2221 peim0), (16)
oy L=mi 1—mn
it is possible to show (see [2] for a detailed proof) that (15) holds when
~7<n (<0). (17)

In fact, condition (17) guarantees that the rightmost local maximum of Q(u) (cf. Fig. 1) is below the line
2 — 1. The other local extrema should be between w and 2 — . In other words, condition (17) works
for polynomials Q(u) which may only very roughly resemble the minimax polynomial. To see whether
our conclusions are confirmed in practice, in Fig. 2 we have plotted S~'r" * and Q(u) observed during
numerical integration of the model problem

y=Ay, y=@,...,)TeR®, A = Diag(—1:0.002 : —0.01). (18)

4 Note that S = I in our example.
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Fig. 2. The absolute values of components of § ~!y" plotted against the u values and polynomials Q (i), observed
within first 6 successive time steps. The lines 1 and 2 — w are dashed.
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The fact that matrix A is diagonal does not affect behavior of the minimum residual iterations. Here we
used the described MRAI scheme based on EB with k = 5 steps of GMRES and the step size chosen
to have —7 < 1y < —6.5. It turns out that the condition (15) is true for most time steps; each time step
where for some u’s the condition (15) is not fulfilled is followed by one or two “‘safe” steps. As we see,
our assumptions led to realistic stability control.

The same conclusions would be valid for other initial values y° and for more “stiff” situations, for
example, for A with eigenvalues evenly distributed in [—1, —0.00001].

The roots n; of R,‘\.")(l — ) are easily obtained from the minimum residual iterative process: they
are the so-called harmonic Ritz values [13]. The rightmost root n; indicates how important the spectral
information is for eigenvalues closest to the origin, and we simply have to check that this stays above
—7.1f ny < =7, then we have to decrease the step size (see Section 4).

Condition (17) is necessary and sufficient for stability when k = 1. Assuming that Q(u) has the
minimax property, for k > 1 we can easily determine the limit values for n, numerically (see [2] for
specific values). However, these limit values may be too optimistic in practice (as we just saw in the
presented experiment, the polynomial Q(u) is not precisely of the minimax type). Therefore, for the
safety reasons, we will use condition (17) for k > 1 as well.

Another simple bound for the time step can be derived under the assumption that R,‘\f” (1 — u) resembles
in average the kth degree Chebyshev polynomial T} shifted to a segment containing all x’s, for instance
[—Atxy ; 0]. This polynomial 7} is also scaled to be 1 at 0 (recall that Ri.'”(O) = 1). The largest root of
R. is 1 — n;. Since we know 7, from the minimum residual iterations, we can approximate uy using the
relation

2y

Aty = N —_—
NN Cos(0.57/k)

Of course, this estimate may not be accurate. Nevertheless, it gives a good impression of the largest
effective eigenvalue that restricts the step size.
Moreover, the stability condition (14) is satisfied when |R; (1 — u)| || < 1. Then, from the estimate

xm-—uN-—1>k

R(1— <o Yok —1
[Re(l = p0) Qm—uN+1

we obtain
JT=ay =1\ -
2<——Jﬂ——>mm<L (19)
VI—puy+1
The last inequality can be solved numerically, which gives an upper bound C for | Atiy|, and, hence, also
for At:
Aty = |un| <C sothat Ar<C/lAn]. (20)

It should be remarked that the estimate (19) is typically stronger than (14), and in practice it should be
relaxed, especially for small k (k < 3). For instance, the constant 2 is often too crude in (19), and does

not reflect realistically observed values.
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3.2. An example of a higher order MRAI scheme

Of course, the ideas outlined in the previous section may also be applied to other implicit schemes. In
this section we discuss briefly the situation for the implicit midpoint rule

n+1

Yiopt = ¥" + At f (tarr 2, 5 (0" + y?r?l_;l»’ 1)

where .1, =1, + %At. This scheme is the second order accurate. We consider as before the linearized
form

(I —3AtA)yiti= (I +1A1A)y" + Arg*!2, (22)
with

f . n 1
A= {@ (tas1/2:¥"), &= ftaifp y") — AY".

For the starting vector for the minimum residual iterations, we select the second order explicit scheme
Yo' ="+ (1 +3AtA) At f (tyg1 0, ¥")- (23)
The initial residual delivered by (23) is r" = }‘(At)3A2 S (tns172, ™), or, and for linear homogeneous
system y’ = A(t)y, we obtain

1
rt= Z(Ar)3A3 y". (24)

In a similar way as for the EB-based MRAI, we obtain after some manipulations, with A=1— %AtA:

n A— 3y n
y = AT+ JArA - 2(3ArA) R (A)) y".

Assuming that A can be diagonalized, and has real negative eigenvalues, we get for the components of
he transformed solutions z" =z

ZII+| — 1 + U _2I‘L3RI(<H)(1 —/'L) N
1—u N

with =  A1A;.
The scheme is stable if for all time steps:
— 243 —
T+ —2u" R (1 — ) <1
l—u
Following the same heuristic arguments as in the previous section, we conclude that the polynomial

Q) =2 Ry (1 — )

has in average almost the minimax property. This leads to the bound

25)

—2.375 < n; (<0), (26)
where 7, is defined as in Section 3.1 (cf. (17)).
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4. Minimum residual iterations and stability control

We assume that the minimum residual iterations are carried out with GMRES [1,14]. The iterations
are applied to the linear system with matrix A (for the EB-based MRAL A = I — AtA). In k steps of
GMRES an orthogonal basis {vy, ..., v;} for the Krylov subspace span{r”, Zr”, e ﬁk‘lr”} is built up.
We take these vectors v; as the columns of the matrix V;. GMRES constructs a small (k + 1) x k upper
Hessenberg system

Hu=b, b=/(|r"],0,....0) e R, 27)

that is solved in the least squares sense, where ﬁ = V,:"HK V.

The construction of V.. and H requires k matrix—vector multiplications with Aand k(k + 1) /2+k
inner products. The Jacobian matrix is not needed in explicit form, only its action on a vector is required.
For instance, this may be approximated directly by a Frechét derivative in the direction of the vector on
which the Jacobian acts. The MRAI algorithm is explicit and allows straightforward parallelization [3].

During the time-stepping process, the stability of MRAI can easily be checked with conditions like
those inferrgd by (17) and (26), and, if necessary, the step size can be adjusted. We note that _IZ depends
on At as H =1 — AtH, where elements of H do not depend on Ar. The required value 7n; can be
computed from the small upper Hessenberg system, since the 1 — 7; are the eigenvalues of the matrix

H™"(H"H),

where H is the k x k upper part of _I::I_ . The values n; are the harmonic Ritz values of A [13].

The conditions (17) and (26) have been derived for a negative real spectrum of A. It turmed out
experimentally that when k > 3 they may also be used when the spectrum of A is contained in the
left complex half-plane. Instead of n;, we then use its real part.

For the simplified situation where f = f(y), we have collected the major elements of two MRAI
schemes, based on EB and Implicit Midpoint rule, in tables 1 and 2. These allow adjustment of the step
size for almost no extra price, when the Krylov basis has already been computed. This is possible because
with the used starting vectors the initial residual vector " depends on At only in its direction and, hence,
the Krylov basis matrix V does not depend on Ar.

Table 1
First order MRAI based on Euler Backward
1. y"isgiven, f":= f(y") Function evaluation
r'":=Af", compute b in (27) Jacobian action
2. Modified Gram~Schmidt = k Jacobian actions,
matrices Vi1 and _Iz k + 1 vectors to store

3. Choose At (cf. (17)), b:= (A1)*b,  O(k?) operations
solve the least-square problem (27)

4. Starting vector: y3+1 =y" + At f"
MRAI step: y"*+! := yo! + Vi k vector updates
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Table 2
Second order MRAI based on Implicit Midpoint rule
1. y"isgiven, f7:= f(y") Function evaluation
pri=Af" "= %Ap", 2 Jacobian actions
compute b in (27)
2.  Modified Gram~Schmidt = k Jacobian actions,
matrices Vi, and _I~i k + 1 vectors to store

3. Choose At (cf. (26)), b := (A1)’h,  O(®3) operations
solve the least-square problem (27)

4.  Starting vector:
yg-H = yn + Alf" + %(Al‘)zp"
MRAI step: y"+!:= y8*! + Viu & vector updates

For other starting vectors, as, for example, for starting vector (28) considered in the following section,
when the computed V depends on At, the stable value of Az delivered by the stability control is used on
the next time step.

S. Numerical experiments

In this chapter results for several numerical experiments are reported. They demonstrate the efficiency
of the MRAI approach in cases where implicit time stepping is necessary but expensive.

We have tested our schemes for the typical situations where high accuracy is not needed in the time
stepping, but fast stable integration is important. We illustrate this by two numerical examples: the

heat conduction problem in 3D (Section 5.1) and an MHD (magnetohydrodynamical) 2D problem from
astrophysical simulations (Section 5.2).

5.1. 3D heat conduction problem

This test problem has been taken from [17]; it is a linear heat conduction problem over the 3D unit
cube. The inhomogeneous term is chosen in order to have the analytical solution tanh(5(x +2y + 1.5z —
0.5 —t)). The spatial discretization is done with central differences on a grid of 79 x 39 x 39 internal
nodes. This yields a system of N = 120159 equations. The integration is done for 0 < < tgnp = 5.0.

We report here on the EB-based MRAI scheme (EB/MRAI). We have incorporated the MRAI
technique into the LSODE code [7], and the EB/MRAI variant has been triggered by restricting the
consistency order in LSODE to one. The EB/MRAI code is a simple integration scheme with inexact

Newton iterations where linear solves are done with & minimum residual iterations. In LSODE with
consistency order restricted to one, the starting vector is chosen as

n n 1y 1"'[!1 ne
yit =yt (" =y, (28)

Iy — bi—1
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and analysis together with experiments suggest that the stability condition is (cf. (17), (26))
—11< 0. (29)

The value 77, and the corresponding stable Ar are obtained at the first Newton iteration. This stable Ar
value will be used in the stability control at the next time step. We do k = 5 minimum residual iterations
in all Newton steps.

In the integration process the local error e” is controlled to satisfy
le!| < rtol|y!| +atol.

We have selected rtol = atol =0.1. The step size is chosen to comply with local error and stability
controls. With such a crude accuracy tolerance, stability control prevails.

The size and the structure of the problem suggest the use of an iterative solver in implicit time stepping.
Therefore we compare our EB/MRALI code with the implicit EB scheme with GMRES(m), m = 20, as a
linear solver.

Of course, in EB it is not necessary to solve the linear equations to full accuracy. In principle, this has
a limiting effect on the stability but in practice it may lead to more efficiency. In our tests we have tried
different stopping criteria for the GMRES iterations in EB/GMRES. The results are collected in Table 3.
Here the CPU time is given in sec for one processor of an SGI Origin 02000. Clearly, MRAI outperforms
the implicit scheme for a wide range of reasonable stopping criteria.

For a coarser grid, direct LU linear solve becomes feasible. For a 19 x 19 x 19 grid, we have
compared EB/MRALI and the fastest variant of the EB/GMRES (the one with relative stopping criterion
irtl/llrgll < 0.5) with the implicit scheme employing direct banded LU linear solves. It is worthwhile
to note that the LU factorizations are reused in the code, that is they are computed only once in a while.
In our test only 3 LU factorizations were necessary. Still, the direct approach was by far more expensive
(Table 4). To assure that we indeed had stable computations we checked the actual error (the maximum
component in the difference of the computed and a reference solutions). For EB/MRALI it was 0.19, which
is of order of the required tolerance. The error delivered by EB/LU scheme is much smaller: 7 - 1073,

Table 3
EB/MRALI versus EB/GMRES
Stopping criterion  CPU time  Fevals/steps

EB/MRAI - 253 1015/143
EB/GMRES  |Ir/ll/lIrgll <0.75 366 1457/162
EB/GMRES  |[Ir}ll/lIrgll <0.5 318 1235/65
EB/GMRES  |Ir}il/lirpll <0.1 391 1351/22
EB/GMRES  |Ir}]/llrgll <0.01 532 1853/22
EB/GMRES |} |/lrgll <1073 588 2048/20
EB/GMRES lrill £0.75 1035 3596/20
EB/GMRES Iril <0.1 1530 4940/20

EB/GMRES lrfil <0.01 1878 6549/20
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Table 4
EB/MRAI and EB/GMRES versus EB/LU

CPU time  Fevals/steps

EB/MRAI 34 241/23
EB/GMRES 43 311/39
EB/LU 82 2194/21

However, a similar accuracy can be achieved by EB/MRAI also in significantly less CPU time: error
8.2-107% for rtol =atol = 10" in 59 sec.

5.2. Magnetohydrodynamical simulation example

In this section we consider a slightly more complicated problem where we use also preconditioning.
The problem comes from the magnetohydrodynamical (MHD) simulation Versatile Advection Code °
(VAC) [10,18].

This model problem is a two-dimensional MHD problem which models the formation of a steady bow
shock occurring in a super-fast flow around a perfectly conducting cylinder (for more details see [19]).

The equations are discretized spatially by high-resolution shock-capturing finite volume schemes [20].
For our example, a polar 60 x 60 grid is used, so that the discretization results in a system of N = 21600
nonlinear ODEs (for six different discretized variables). For this simulation the steady state solution is
obtained by the time-stepping process until the relative difference in solution becomes sufficiently small:

”yn—H _ yn”* <e= 10—4. (30)
The norm || - ||, is a special weighted norm with different weights for each of the conserved MHD
variables.

We compare three time-stepping strategies: the MRAI scheme, the linearized EB scheme, and the EF
scheme. In EB, the linear systems have been solved iteratively. We have chosen GMRES(m), m = 20, as
an iterative solver. The number of restarts is restricted to 5. A simple strategy to stop the iterations is to
stop whenever r} < & (cf. (30)), so that at every time step the residual in the implicit scheme is not larger
than the prescribed steady state accuracy ¢. The iterations in MRAI and EB can be preconditioned with
an efficient modified block ILU (MBILU) preconditioning [22]. We compare the strategies both with and
without preconditioning. The situation without preconditioning is meaningful in itself since it provides
information about effectiveness of our approach for problems for which preconditioning is not readily
available.

In EB the step size is chosen in such a way that the CFL number is 100, which means the step size is 100
times larger than the maximum allowed step size for EF. For EF At is chosen to have CEL number 0.8.

The MRAI variant is based on linearized EB. For MRALI, the starting vector has been chosen as
y4*! = y". This means that the formal consistency order of MRAI is zero, but consistency is not much
of concern for steady state problems. A stability analysis similar to that of Section 3 suggests that this

MRALI scheme has a much larger linear stability region than the first and second order MRAI schemes
described in Section 3.

5 See URL http://www.phys.uu.nl/~toth/.
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Table 5
MRALI for an MHD simulation
Method CPU time Matvecs Time steps
MRAI 225 1575 315
EB 291 3744 36
EF 533 - 1710
Table 6

MRAI for an MHD simulation: preconditioning

Method  CPUtime Matvecs  Time steps
MRAI + prec. 51 190 38
EB + prec. 64 511 32

It is important for the overall efficiency that MRAI allows for a cheap and flexible change of At (as in
Section 4).

In the stability step size control used, the value of At was accepted when —12.5 < n; (cf. (17), (26)).
In our experience this stability condition is quite useful for situations where the elements of A + AT have
the same order of magnitude as A — AT (A is the Jacobian matrix).

Unfortunately, we do not have an appropriate stability control when preconditioning is involved. In the
tests with preconditioning here we simply perform 4 = 5 minimum residual iterations per time step. The
step size is chosen in the same way as in EB, that is the CFL number is 100.

The resulting MRALI is almost identical to the one represented in Table 1; the difference is in several
simplifications: r" := f", b:= Atb in step 3, and yg*' := y".

In Tables 5 and 6 we present results of the test runs carried out on one processor of an SGI Origin
02000. As we see, the MRAI scheme is about 25% faster than EB and much faster than EF.

For the unpreconditioned case, the simple strategy to adjust the step size to have the CFL number 100
leads to worse results for MRAL

In column “matvecs” of Tables 5 and 6, the number of Jacobian-vector multiplications indicates the
work involved for the efficient stable time stepping. This number is not directly proportional to the total
CPU time for the following reason. In this simulation, after each time step it is necessary to update
the computed magnetic field in order to make it divergence free, and this is rather expensive. Therefore
schemes that require more time steps have a larger overhead in this case.

6. Conclusions

Stabilized explicit methods and implicit methods based on iterative linear solves become attractive
when the Jacobian matrix is not easy to obtain and/or invert, or, in parallel processing.

We have studied the effect of approximate linear solves in implicit time stepping processes. A small
fixed number of minimum residual iterations are performed in each linear solve. The resulting schemes
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can be seen as approximate implicit schemes, which are referred to as MRAI (Minimum Residual
Approximated Implicit) schemes.

The schemes are in fact explicit, so that the stability is now of concern. We propose a convenient way
to control the stability and adjust the step size adaptively.

Usually, the convergence in linear solves is checked by displaying the residual norm. In many cases it
is not clear what tolerance has to be taken here. In our approach, different information coming from the
linear solver itself is used for the stability control, and this is shown to be more efficient in practice.

Unlike many other explicit stabilized methods (see, e.g., [23]), such as RKC, MRAI successfully copes
with the complex spectrum Jacobian.

Our numerical experiments show that, when standard implicit schemes are too expensive and high
accuracy is not required, MRAI can be very attractive.
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